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Abstract  

We describe a clustering based methodology to map 
3D horizons automatically. From a Cosine of 
Instantaneous Phase version of the entry 3D Seismic 
Data, we represent the volume voxels by feature 
vectors that are windows of vertical neighboring 
voxels. We vary the window sizes, creating many 
representations for each voxel, and creating many 
datasets of feature vectors, organizing the vertical 
windows according to its size. From the datasets we 
create many clustering procedures creating distinct 
sets of clusters, so that voxels are represented by the 
clusters where its corresponding vertical windows 
were classified. Based on these clusters, we compute 
a similarity function that is naturally non-local and 
auto-adaptable, optimized for each particular seismic 
data. This similarity function is the measurement that 
decides if two arbitrary voxels compose the same 
horizon. The experimental results indicate the 
efficiency of the proposed method and illustrate its 
advantages. 

 

Introduction 

 
Seismic interpretation is a vital step in oil and gas 
industry. Choosing proper drilling locations is a major 
challenge to the interpreters. An ultra-deep water oil well 
can cost dozens of millions of dollars. The first pre-salt 
well took more than a year and cost U$ 240 million to 
Petrobras. So, the properly mapping of relevant seismic 
features has a great importance in oil and gas 
exploration. In this context, seismic horizons are 
geologically significant surfaces that can be extracted 
from 3D seismic data. Horizons refer to those seismic 
reflectors representing stratal surfaces of constant 
geologic time (Wu and Hale, 2013). 
 
There are several works focused on local automated 
horizon-mapping. These methods use seed-based, auto-
tracking, and extract horizons by correlating the local 
amplitude between neighboring traces. Yu and Kelley 
(2011) combine pick and trace selection to obtain horizon 
surfaces. Li et al. (2012) identify horizons using a 
combination of horizontal derivative and mathematical 
morphology. In other hand, global approaches have been 
proposed to compute global geological models from the 

seismic data. Hoyes and Cheret (2011) present a review 
summarizing global interpretation methods for 3D horizon 
mapping. Wu and Hale (2013) present a horizon-
extraction method that uses seismic normal vectors to 
extract globally optimized horizons. Figueiredo et al. 
(2013) unveil a global methodology that transforms 
seismic data from the amplitude space into a multi-
dimensional space, using clusters from vertical windows 
of samples to map horizons. This method organizes the 
seismic data according to a global and auto-adaptable 
criterion, and maps horizons using fixed seeds. This 
avoids a major weakness of many methods, i.e., solve 
huge series of local problems, leading to poor mapping 
quality. 
 
In this work, we present an auto-adaptable method to 
map horizons globally distributed along the seismic data, 
using a methodology that resembles the field of Seismic 
Facies Analysis (Marroquín et al., 2009), as it shares 
some similarities with the methodology presented by 
Figueiredo et al. (2013). Our routine aims to partition the 
data into groups of similar seismic trace shapes providing 
a natural clustering structure. Patterns in a given cluster 
resemble each other more than in other clusters. In order 
to find seismic horizons, we vary the size of the analysis 
window and create different representations for each 
amplitude sample. We then classify each representation 
through a corresponding clustering procedure, based on 
the Growing Neural Gas algorithm (GNG) (Fritzke, 1995). 
The different voxels' representations and the information 
provided by the clustering procedures are used to 
develop a similarity measure between voxels that dismiss 
any kind of parameters or thresholds given by the user. 
Using the clusters' information, the methodology finds a 
list of good seeds from what horizons disposed along all 
the seismic data can be adequately mapped in a totally 
automatic manner. 
 
The outline of the proposed method is as follows: (a) We 
first define the type of amplitude samples to process, 
positive amplitude peaks or negative amplitude peaks. 
Then we create datasets composed by vectors of vertical 
neighboring amplitudes to represent each voxel of this 
type of interest. (b) We use the datasets and the GNG 
clustering algorithm to create groups (clusters) that 
represent similar vertical amplitude variations. Using the 
information provided by the clustering processes, we 
represent each voxel by its equivalent set of labels 
containing the ids of the clusters where its corresponding 
vertical vectors were classified. (c) We present a similarity 
measure between two given voxels, based on its 
corresponding sets of labels. (d) We use the similarity 
criterion to map horizons along the seismic data and 
describe our horizon mapping algorithm that tracks the 
surfaces dismissing any kind of external information. 
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Method 

 
Creating the Datasets of Samples 

 
In order to minimize the amount of voxels to be processed 
the methodology examine all the data selecting the voxels 
representing one of two types of voxels: positive 
amplitude peaks or negative amplitude peaks. This 
subset of voxels compose the set of voxels to be 
processed, referred as set M. The next step consists of 

creating feature vectors to represent each voxel stored in 
M. We use the same representation commonly used in 

Seismic Facies Analysis (Marroquín et al., 2009), and 
adopted by (Figueiredo et. al., 2014) i.e., by windows of 
trace shapes that are vectors of vertical neighbors. In 
order to capture different features, we vary the window 
size, creating r representations for each voxel. The 
window sizes to be used are defined in the set N={n0, n1, 

..., nr-1}. Consider ati  as the (i-th) voxel of a trace (t), (ati ∈ 
M). We compute each of its r corresponding vertical 

windows by: 
 

   
(1)

 

 
We group these vectors according to its size creating r 
datasets of vertical windows, that is, the samples created 
using nj ∈ N are stored on the corresponding dataset Dj. 

This process is illustrated in Figure 1. 

                    
Figure 1: Each sample ati from the subset to be 
processed (e.g., negative peaks) is represented by its r 
vertical windows. Here, N={n0, n1, n2}, with r=3, giving rise 
to the samples sti0, sti1, and sti2, stored into its 
corresponding datasets, D0, D1 and D2. 

 
Clustering the Datasets of Samples  
 
After the creation of the datasets, we use a specific 
clustering algorithm, known as Growing Neural Gas 
(Fritzke, 1995), to divide each dataset dataset Dj into a 

distinct groups of samples. GNG creates a self-organizing 
map of clusters whose structure is constructed spatially 
reflecting the sample distribution of the input dataset. 
After execute the clustering procedures, each cluster 
center represents the subset of samples from the dataset 
that was classified into this cluster. We avoid classifying 
various samples from the same seismic trace into the 
same group, we define the number of clusters to be 
slightly greater than the number of layers contained in the 
data. 
 

Despite the lack of lateral information stored with the 
samples, neighboring layer voxels represented by their 
corresponding vertical neighbors' samples will share 
similarities with respect to their neighboring amplitudes, 
and probabilistically tend to be located in the same 
cluster, or at least in closely positioned clusters. After the 
clustering step, each cluster receives a unique numeric 
label id. Using the information provided by the clustering 
processes, we represent each voxel ati, (ati ∈ M), by its 
equivalent set of labels, Eti={id0, id1, ...., idr-1} containing 

the ids of the clusters where its r corresponding vertical 
vectors were classified.  
 
Using Clusters to Measure Similarity  
 
We then define a function capable of measuring the 
similarity between two arbitrary voxels using the vectors 
of Labels. Given two voxels a1 and a2, we define the 
similarity function S(a1, a2), using its corresponding set of 
labels E1 and E2. Considering E1 and E2 as two sets 
composed of integer elements, we define S(a1, a2) as the 
cardinality of the intersection between the two sets, where 
bigger values of S indicate greater similarity: 
 
                    S(a1, a2) = |Ea1 ∩ Ea2|,       0 ≤ S(a1, a2) ≤ r    (2) 

 
The Horizon Mapping Procedure 

The procedure that maps the seismic horizons is based 
on that described in (Figueiredo et. al., 2014).  It uses the 
clusters' location to map the horizons. The lack of lateral 
information stored with the vertical samples and the 
clusters' auto organization along the samples space 
provide important advantages: (1) The clusters implicitly 
store information about its corresponding samples' set, 
and the clusters disposition along the samples space 
reflects the local density of the vertical samples. 
Neighboring layer voxels represented by their 
corresponding vertical neighbors' samples share relative 
similarities with respect to their neighboring amplitudes, 
and probabilistically tend to be located in same clusters, 
or at least in closely positioned clusters. (2) At same time, 
areas of relative breaks in the lateral continuity are 
represented into the vertical samples' space by a relative 
lack of similarity with respect to its neighboring vertical 
samples and are naturally classified into different clusters.  

Before describe the horizon mapping procedure we need 
to define our concept of immediate neighbor voxels. 
Considering ati as the i-th voxel of a trace t, we define the 
immediate neighbors of ati as the voxels a't'(i-1), a't'i and a't'(i+1), 
the (i-1)-th, i-th, and (i+1)-th voxels on the immediate 
neighbor trace t'. 
 
The horizon-mapping procedure uses fixed seeds, 
mapping a dense set of seismic horizons. It can be 
described as follows: (a) The method takes the voxel 
external seed voxel that we call as sti, the (i-th) voxel of a 
trace (t). It has a corresponding set of labels Eti. (b) We 

use the similarity function S to find the most similar 
immediate neighbor voxel in each immediate neighboring 
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trace of sti. If the similarity value between this best 
candidate and sti is greater than one, the candidate is 
added to the set of samples that compose the horizon. 
The best candidate is marked as discovered and cannot 
be used as part of any other horizon. (c) The procedure 
continues, using S to test the immediate neighbors of the 
already discovered voxels against the fixed seed sti. (d) 
After all the voxels similar to sti have been discovered, a 
new sample s'ti is chosen randomly from already 

discovered voxels, and the process continues up to the 
point when the new seeds s'ti does not discover any new 
samples.  
 

 
Figure 2: A view of 6 seismic horizons mapped using our 
methodology.  
 

Results 

 

We tested our methodology with many different datasets. 
We present here results achieved using the 3D dataset 
known as F3 Block data, in the North Sea, Netherlands, 
which is publicly available via dGB's Seismic Repository. 
Due to space limitations we present here the only main 
horizons mapped to the F3 Block. Figure 2 shows six 
horizons mapped throughout the whole data. In figures 3 
and 4 we report important information about the surfaces 
mapped using our method. As we see in Figure 3, the 
method maps horizon with voxel precision. In this figure 
all the voxels that compose the mapped horizon are 
negative amplitude peaks. Sometimes it is possible 
identify small regions where these peaks were not 
identified. We proceed completing geometrically these 
small holes into the horizon surfaces. The corresponding 
completed horizon is presented in Figure 4.  
 
In Figure 5 we present 10 mapped seismic horizons, in 
contrast with two orthogonal slices, (a) inline number 388, 
and (b) crossline number 970. The first 300 milliseconds 
of the original data were not included in the picture. Each 
color indicates a different horizon. From the figure we can 
verify the correctness of the mapped surfaces. The 
method correctly mapped seismic horizons, following the 
seismic signal with voxel precision, even on that regions 
characterized by undesirable signal-to-noise ratio. 
 

In Figures 6 and 7 we show a possible application for the 
methodology, that is, using the discovered horizons to 
define layers of same relative geologic time.  
 
 

 
Figure 3: As the method only maps amplitude peaks, we 
can visually identify small voids where amplitude peaks 
where not identified. Note that the horizon adequately 
contours the mapping around the seismic fault present in 
the data.  
 

 
Figure 4: A version of the seismic horizon presented in 
Figure 3, where small voids where completed 
geometrically.  

 
The set of training parameters used to achieved the 
reported results are defined bellow.  
 
We mapped only negative amplitude peaks. The number 
of voxels in the vertical windows were {19, 19, 21, 21, 23, 
23, 25, 25} voxels, always taken from the Cosine of 
Instantaneous Phase version of the entry Seismic Data. 
The number of clusters created into the corresponding 
datasets was  {75, 78, 74, 82, 79, 86, 73, 81}. The 
processing time was around 32 minutes using a hp Z820 
workstation. 
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Figure 5: In this figure we see 10 seismic horizons 
mapped along the seismic data. We show the horizons 
intersected with two orthogonal slices, so that it is 
possible to verify the correctness of the mapped surfaces.  

 

Conclusions 

 
We proposed a solution based on clustering to the 
problem of automatically mapping horizons in 3D seismic 
data. Our method creates many representations for each 
voxel, as to generate various clustering procedures, 
organizing the set of voxels according to a global 
criterion. The method uses non-local cluster information 
when searching for neighboring samples, avoiding the 
drawbacks of local procedures.  We presented 
experiments indicating its efficiency and illustrated its 
output. The experimental results suggest that clustering-
based procedures are a good alternative to automatically 
mapping of seismic horizons. 
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Figure 6: Using the mapped horizons we can create a 
model defining layers of same relative geologic time.  
 

 
Figure 7: We can see another version of the same model 
presented in Figure 6.  
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